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1. Introduction

The vibrations of a string of density p(x), length L taut by a unit

tension, are governed by the equation
2
u" + wpu=0, xe{0,L). 1)

It is well known that if psCZ(O,L), this equation can be transformed into

the canonical Sturm-Liouville equation
2
y" + (w'-q)y = 0.

However, even in those cases in which p is sufficiently smooth, there are
certain advantages in dealing with the problem in its original form (1),
particularly if one is interested in other vibrating problems.

In the present paper, I shall present a new approach to the solution
of the inverse problem for the vibrating string, i.e. to the reconstruction
of the density p(x) given its length L and two spectra {kn}; and {un}: .

In order to simplify the presentation, I shall assume that the spectrum

ah1 is associated with (1) and the boundary conditions

u(0). = u() =0, (2)

i.e. the fixed/fixed configuration, while {un}T is associated with the free/

fixed configuration:

u'fO) = u(l) = 0. (3)
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g o0 (-3
B The data {An}1 , {un}l

p(x). The existence of this solution is also guaranteed if the eigen-

and L guarantce the uniqueness of the solution

values y_ and A (i) interlace, (ii) have the appropriate asymptotic
n n PP

behavior for large order and (iii) are such that {1]

) .

n=l 2 = u 2 = " 2
!
‘ n ‘l' - 2y l| (1- 1
4 2 2
: k#n no k=1 A

‘ In addition to the above conditions, I shall assume that the data are such

| that p(x) is continuous and bounded away from zero.

’ 2. Statement of Results

Theorem 1: Let {An}: be the spectrum of the eigenvalue problem
u'' + wzpu =0, }
u(0) = u(L) = 0,

and {un}I the spectrum of

u'' + wzpu =0, l
f

u'(0) = u(L) =0 .

If the function p(x) is continuous and bounded away from zero, then

°
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and {un(z)}T the spectrum of

u" + wzpu =0 , l

u'(2) = u(l) =0, ‘

where 0 < £ < L. If p(x) is continuous and bounded away from zero for

xe(0,L), then

© 4

A (x)
p(x) = 21 7 2 7
r (L-x)" w " (x) 0y Mpeq (e "(X)
£
Theorem 2: Let {An}:, {un}: and L be such that the solution p(x) of the

inverse problem for the vibrating string exists and is continuous and bounded

| away from zero. Then, this solution is given by
3 «'
f o

4

1 An (x)

p(x) = 2 2. 2 2
w0l ufeo 1w, fe e

n=1

where {An(x)}T and {un(x)}: are the solutions of the initial value problems

B ;
2 2 T (-2 20/ 2 (x)
dln ) Xn (x) k=l n k ?
‘ dx T TL-x ® ’
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4
} 2 2 ’
4 du 2 (l'un (X)/Ak (X))
n _ 4 k=1
I " My (e (x)(L-x) — ’
3 ‘ 2 2
| (-up () /" (x))
1 k#n
with
2 2
*n (0 = An ?
’. 2, 2
oo (0) = w7
3
3. Proofs
Proof of Theorem 1. The given data are such as to insure the
K existence and uniqueness of the solution of the inverse problem. Following
Krein [1,2]}, we can construct this solution by considering a converging
sequence of approximations to the integrated mass, viz.

X
mn(x) = I p(x")dx!

(o]

The generic Nth order approximation to m(x), say m(N)(x), is a piece-wise

AR 1LY A 20

constant function:

N i ?

m( )(x) = Z m, for xe[x., x.,,), 1i=1,2,...,N 4) f

! PR i’ Ti+l !

¥ :
In the above formula mo=0, xo=0 and xN+1=L. The other values of m. and

: x,, or rather : [

s e e




are found by writing the rational fraction -Uo(wz)/Uo'(wz) where

| | .
. v W = - l=l - o'k,

and
N

Ve 2. I ' 2, 2, -
) o (w’) = (1- w /un ) I

=1

(=~

as a Stieltjes continued fraction, viz.

Uo(wzl L . 1 I .1 ' . ;.. 1 l
0

Uo'(wz)

It is possible to write down explicit formulas for 20 and m .

| To that effect, we first divide -U_(u*) by U ' (), viz.

2 er 2 2
—Uo(w ) = QOUO (w) - Ul(m ) .,

o —
()

and then Uo'(wz) by the remainder of the previous division, namely

b -Ul(wz):

2 2, 2 2
o U @) = -mpU; (%) + Uyt ()

(5a)

(5b)

(6)
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Clearly

The polynomial Ul(wz) being of degree (N-1) can be written as follows:

. N-1
2, _ wz
U w?) = -(L"20) (1- ';‘—'2-) .
' n=1 n

where An is the nth eigenfrequency of a string with point masses

{mi}g located at {xi}g whose left end at x=x 22 and right end at

1
x=L are held fixed. With this expression for Ul(wz) we can carry out

the division in (8) and get

N-1
i 2
n
n = 1 , _n=1
1 (L-x,) N .
1 2
u
n
n=1
Now consider the ratio ml/zoz by definition
x
1
n J Q(N)(X)dx
I‘o x1

where p(N)(x) is the N-th approximation to the density. If p is bounded
away from zero, then as Ny, x1+0 and the above ratio tends to p(0).

Therefore
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As N, x1+0 and consequently in+kn; making use of the asymptotic form of
the eigenvalues, we can show that the resulting infinite product is con-

vergent and consequently that

P(0) = 5= 27 - 12)
By repeating the analysis for that portion of the string occupying
the segment (&,L) we could deduce that

4
1 A ()

P = ——— - — (13)
(L= ™) R OO

n=1

Proof of Theorem 2. Let U(x,wz) denote a fundamental solution of

(1) such that

UL,w2) =0 ,

U(L,wd) =1 .

1,

e P
i 7 LA
,.’fMP... T

VAP LI TIN ONR SO et G2 (0N Te A T



Do agliend - 2 ki 0 -

-

e —

Since U(x,wz) and U'(x,wz) are entire functions of wz of order 1/2, they

can be written as follows:

V) = -0 | | a-?n 2e0)
n=1

(14)

U (x,02) = | ! (1-u/u 2 (x))
. n=

The coefficients in front of the infinite products have been determined by
setting mz equal to zero in (1). The zeros of U(x,mz) and U'(x,wz) are
the eigenvalues of that portion of the string occupying the interval
(x,L) and vibrating in the fixed/fixed and free/fixed configurations.

The product representations (14) must (i) be compatible and (ii)

satisfy the original equation (1). As a result, we must have

o«

2
2,, 2 I mz dAn wz
(1-0°/A ) - (tx) I — i - ——)

k=1 n=] An (x)

(1" ‘; ) s Ji
=1 wo ()

and § 

2 dy 2 ' :
2. . d I - ——)
X

He~18
€
=

n

2
| u, T (x)
k#n k

= w%0 (x) (L-x) - —4— .

k=1 - A (X)
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By equating the coefficients of equal powers of wz, the above identities
give rise to an infinite system of linear equations for the unknowns

2 © 2 o | . . s pe s
{d)«n /dx}1 and {dpn /dx}1 . The solution of this infinite system can
be obtained via the theory of infinite determinants. However, there is
a simpler way of arriving at the solution. To that effect we return to

(14) and write

U(x’knzcx) =0, n=1, 2,

Differentiating with respect to x, we get:

2
3U(x,0%) . Ynoau,ed - o
ax w2 = Z(X) dx 3w2 2 2

2
A T (x)
2 2 (- S5—)
da )\n (x) k=1 uk (X)
dx = - L-x : 2 (15)
A T (x)
(1- “2 )
k#n A (x)
Similarly
- 2
BT (x)
u = X
I 0 e LK (16)
— 2
u, (x)
(1- )

ke W00
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Or, substituting p(x) by the expression given in (13),

2 2
© (l'u (X)/A (X))
a’ ) wte A () a )
dx " L-x 2 2 2 e - (7
¥ (x) Moe (07 () 2 2
m:l (l'un (x)/uk (x))
k#n

We shall establish next that the initial value problem consisting of

(15),(17) subject to the initial conditions

~
=
~
[}
>
-

(n=1, 2, ...) (18)

r_“(0)

|1}
A=
-

has a unique solution. For convenience, we can write this initial value

problem as

dv _
=0
v(i0) = v ,

where the stretched coordinate £ is defined thus

E=tn (1-7),

v stands for the sequence obtained by interlacing the eigenvalues

2.» 2. .
{un}l and {An}l , namely




2n n

v2n-1 = ¥y ’

and finally

2, 2
(l-ln /uk )

=
)
o]
"
U
D

2,. 2
(-2 /2%
k#n n 'k

[ ]
= 2, 2
4 4 H(l-u/x)
Y} um . k=1 n k
2 ©

H H H
1 _ m+1"m 2, 2
m=1 l l A-w "/ w ")

k#n

Let us first prove that fn and g, are of O(nz) for a given pair of spectra

{un}: , {An}T . To that effect we write £, and g in a more convenient
form:
| z :
. £ =n( 242 . m cim Llogm "k a1k
b2 n n — e + en
2 2 2.y 2
¢ n “m kfn "k 'n
?
4
and

N 2 2 2 2
. 22.||A -1 _gm¥ Ay oH
g, = n(An My ) 1/m #nn ' n k "n e-l/k

(19a)

(19b)

gt e

(20a) . \:
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Mg

L
3
Anz ~ nznz/(I pzdt:)2
o
for ne
L
3
unz - (n~3§)2n2/(J 0idt)>
o
it is sufficient to show that
2 2
1 A, Ten
F = e K inn (1_ k k ) el/k - 0(1)
n 2 2
Ak -An
k#n
and
2 A 2_]J 2
Gn = e ~p-tmn n2 (1+ k 'k ) e-llk = 0(1)

31 My “¥n

k#n

As a matter of fact, we shall only show that (2la) holds; the same

arguments can be used to prove (21b). Since

—5—73 < 1 for all kfén ,

we can bound Fn above and below:

{(21a)

(21b)
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2 2
A T-p
exp [ 1 tan s ¢ 1.k &k < F
k 2 . 2
n k#n THREESY n
k n
\ 2 " 2
1 1 kK Tk
iexp[n-lnn+k§n(r-:~2—;-2-)].
k "n

For large values of n, say n>N, where N denotes the subscript above which

2 2
n

equalities as:

Now

|
|
{
t
|
\

and unz take on their asymptotic values, we can rewrite the above in-

n, N Akz-ukz n-1 Akz-uk2

exp [(Jg-tm) + ] S5—5+ 1 —5—5
1 1 An -By N+1 An My

2 2 2 2 2
4n A C-p © A, -

. Z (1 __k "k ) + Z (1 _k 7k )] < F
nsl Z-A 2 3 k Z-A 277 — "' n
"k "*n 4n"+1 Yk "*n
2 2 2 2

n
exp [( § %-- £nn) + J ——3

2 2
1 An -Ak N+1 An -Ak
4n2 A 2_u 2 - A 2_u 2
1 k 'k 1 k 'k
v I G- )+ L G- 5 )]
n+l A 2-1 2 2 k A Z-A
k 'n 4n"+1 k n
N
-2
Y} = o™ ,
1
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n-1 1
! Yy = 5 nn + o(1)
! N+1
1
4n2

~
n

- %-lnn + o(l1)
i n+l

o(1) ,

Nt~ 8
n

4n +1

where we have used the sigma sign as a shorthand notation for the various

sums entering in the exponents. Therefore,
F +ef as ne s

where vy is Euler's constant.

The next step consists in introducing the sequence space S where

Iy, |
4

s= {675 I =] —

18
A
8

as well as the supspace S* C S of sequences which (i) are positive (ii) are

increasing and (iii) satisfy the asymptotic relation

v o~ 3 as pre

where 1 is a constant. Clearly, sequences obtained by interlacing two

spectra lie in S*. Also, h can be thought of as a map of s* in S.

(22)

T -,

(23)

e T Tt e - e
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The spaces S and S* are convex: indeed, if o,neS*, then
ag+(1-a)neS* where 0<a<l, More importantly, the functions hn(ac +

(1-a)n) , n=1, 2, ... are analytic functions of a for ac[0,1]. Con-

sequently, for every n there exists a value a such that

dh

= 0
hp(@) - h(n) = —5 -a
“n
or equivalently
ahn
hp(@) - b (n) = ) 7| (Ogp o)
m axm
2
n
) ahn
+ (o -n, ) .
= 2 2m-1 2m-1
o
n

B e

We should remark at this stage that on account of the asymptotic form of

hn’ the an's become independent of n, or more precisely .
°2n > Ge
as n+e
%2n-1 " %
Referring to (19), we can deduce explicit formulas for ahn/axhz and
) )

ahn/aum . As a result




[+]

2m an

INC e
n

h, (6)-h, (n) =
2n 2n n n#n A(Zn)z(A(Zn)Z—A(Zn)z)
m m n

(2n) 1 1 1 .
MR 7 - 2 5+ 1 2 71 (9507 Mp)
A(Zn) k (2n) (2n) k#n _(2n) (2n)
M -2 A -2
n k n k n
o -n
. A(zn)z f(Zn) z 2m-1 2m-1 ) (24a)
n 2 2 2
n m _(2n) ( (2n) _A(Zn)
™ Y n
where
2

(2n)” _ -

A ® %n %n*t a %ndon
2

(2n)" _ -

¥ = %n %2m-1 * a a2n)n2m-1 ’
and
(2n) _ _
fn th (°2n° + °2n)n)
Similarly
(2n-12 (2n-1) 6. -n
h, .(9)-h, .(n) =u g ) 2m ~ '2m
2n-1 2n-1 n n m 2 2 2
\(2n-1)°, (2n-1)°_ (2n-1)%
m (p “¥n

(2n-1)2 _(2n-1) Tom-1 - Mom-1
n LI R (2n-1% (2n-1)% (2n-1)?
Mo (um oMy )




g, -n o] - N
. zg(2n—1) X { 2m  2m 2m-1 2m-1 }

m A(Zn—l)z u(Zn-l)2
m m

n

. ngZn-l) —2 .7 1 . 1

n n n

Because of the asymptotic form of fn and 8,» We can assume that hn(c)-hn(n)
is positive for n>2N, by interchanging if need be ¢ and n. Dividing (24a)

by (Zn)4 and (24b) by (2n-1)4 and summing over n, we can see that

@ h (c)-h_(n) -
-ll—jr—ll——— < const. ||o-n]|] ,
1 n

or, in view of the previous remark

2N |h_(0)-h_(n)| 2N h_(0)-h_(n)
lIh@-hm ]| - { ] ——5= . =
1 n L n

< const. ||o-n]|

In order to derive the above inequality, we have made use of the fact that
the dependence of the various quantities on a can be ignored for large n's

and that the sums

2 1o, -0, ).
Jen-n? ok A}EZn-l)z_u(Zn-l)z k#n uIEZn—l)z_u(Zn-l)z 2n-1""2n-1

(24b) 5

e e e

(25)

|
f
|
i
|
|
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are of O(m'z). Noting that (24a) and (24b) imply that

Ihn(o)—hn(n)] < const. ||o-n]| (26)

.o

s
2,
e
. -
4,

we therefore conclude that

||h(o) - h(n)|]| < const. ||o-n]]| . @2@n

This Lipschitz condition guarantees the existence of a unique solution

to the initial value probiia.

4. The Quasi-homogeneous String

This paragraph examines what happens to formula (13) for the case

of a quasi-homogeneous string, i.e. for a string whose density is:

p=p [1+er(x)] (28)

where e<<1l. Making use of perturbation theory, one can easily show that

- g T T

2 2 :
A2 = BT 1 e e(r, ¢+ 2r )+ 0(eD)] (282) .- |
n ~ 2 o 2"2n O

o (L-2) e f
f
i
and §
2 (n-%) *n 1 2 ]
u (&) = 2 (1 -e(x +571 ) + 0(eD] , (28b) ]

n - 2 0 2 "2n-1
p(L-2) L

where

L
r = A r(x)dx
o L-2 % ?
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B
1 BRI milios e +

-r

N

,“
R

and

L .
.2 X-2
L) I r(x) cos nmw iz dx . (30)
L
Therefore
4
2 @) 4
n . 1 1 2
=g Lt elry, + 5T * 3 Typy) + 0]

RO MO BN CEES

and consequently

4
X L 4 © +
l n | I n h+e T . Ten1oney o200

|| = 2 2 2 SRRCP™ 2
n=1 un+1(9‘]un (9‘) n=1 (n '4) n=1
2 T o
= %r-{l + e(- 7%—+ ) r) + 0D} .
n=1
Hence
b of 00
1 2
o 4 : 1+e(——2—+§rn)+0(e)

"
©

. —[— ORI
7 32 2 2 T
0% W 11 qa® 5® e o

n
I

Leelr + 0e3)] (31)
[+]

Thus, for the simple case of the quasi-homogeneous string, formula (13)
reduces to an end-point evaluation of the Fourier cosine series for r(x).

Indeed, from the representation

: ' .N.vj§§2f?s

B A R

VSRR s — <" e PR 5 — RPN PR 0
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B x-2
r(x) = + § r, cos nw =

it is obvious that

p(2) =p [l +¢€ ) rn] .
o

5. Concluding Remarks
The derivation of p(0) via the computation of 20 and m, can be
thought of as involving a process in which the frequency w tends to infinity.

Had we started with a time dependent formulation of the problem, this

1 process would have been associated with letting the time t tend to zero.
In that sense, the method is reminiscent of that of Kac [3], Deift &
Trubowitz [4] and Trubowitz [5]. A similar approach can also be used for

solving the canonical Sturm-Liouville problem: in this case q(x) is expressed

via a trace formula such as the ones given in [6,7,8]. However, the results
are not as explicit as‘in the present case.

Finally, we have restricted our analysis tc the boundary conditions
(2) and (3). If these boundary conditions are replaced by the following

ones: i
u(0) = u(L) cosy + u'(L)siny = 0 1" f

and

u(0) cosf - u'(0) sinf = u(lL) cosy + u'(L).sinyl= 0 (2Y)

where 0 < B8 f_n/Z and 0 < y < 7/2, then the expressions for zo and m,
change slightly (see [9]) and as a result formula (13) becomes:

4
A (x)
p(x) = ————; 2 Il - (13"
sin“p (L-x) My (x) ] un*l(x)un (x)

n=
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